1. |
|
과목 개요 |
1. 교과목 개요 2. 디지털 시스템의 장단점 3. 현재와 미래의 기술 동향 |
|
2. |
|
신호와 시스템 - 분류 및 특성 |
1. 신호의 정의 2. 신호의 표현장법 |
|
3. |
|
Sampling의 기본 개념 |
1. Sampling의 기본 개념, 2. 정현파 신호의 sampling, 3. 주파수의 개념 |
|
4. |
|
신호와 시스템 - 표현 |
1. 대표적인 신호와 특성, 2. 시스템의 표현 방법 |
|
5. |
|
신호와 시스템 - 분류 및 특성, 해석방법, Convolution |
1. 신호와 시스템 - 분류 및 특성, 2. 시스템 해석방법, 3. LTI과 Convolution |
|
6. |
|
LTI system의 출력 |
1. Convolution 연산 2, Convolution의 특성과 시스템 연결, 3. Block diagram, 4. Cross-correlation |
|
7. |
|
z-transform |
1. z-transform 정의, 2. z-transform의 특성, 3. system function |
|
8. |
|
z-transform - inverse |
1. inverse z-transform, 2. Partial fraction expansion, 3. Long division |
|
9. |
|
Frequency anslysis of signals |
1. Frequency anslysis of signals, 개요, 2. Fourier representations |
|
10. |
|
DTFT |
1. 중간고사 review, 2. DTFT |
|
11. |
|
Fourier representation for discrete-time signals |
1. DTFT, 2. DTFS, 3. 특성 |
|
12. |
|
Frequency-domain analysis of LTI systems |
1. Frequency response of an LTI system, 2. Eigen-function of LTI systems, 3. Frequency selective filters |
|
13. |
|
Design of filters with pole-zero placement |
1. Frequency response and pole-zero pattern, 2. Design of frequency selective filters |
|
14. |
|
Design of filters with pole-zero placement - Continued |
|
|
15. |
|
Sampling Theorem |
Sampling Theorem |
|
|
|
DFT |
1. Frequency-domain sampling, 2. DFT |
|
|
|
DFT - Continued |
1. DFT, 2. DFT의 특성, 3. Circular concolution |
|
|
|
중간고사 2 review |
|
|
|
|
Signal filtering with circular convolution |
1. Circular and linear convolution, 2. Overlap-and-save method, 3. Overlap-and-add method |
|
|
|
Signal analysis and windowing / FFT |
1. Signal analysis and windowing, 2. FFT |
|
|
|
FFT - Continued |
|
|
|
|
Implementation of discrete-time systems |
1. Implementation with block diagram, 2. Implementation of FIR system |
|
|
|
Implementation of discrete-time systems - Continued |
1. Lattice structure, 2. Implementation of IIR system |
|
|
|
Filter design |
1. Causality, 2. Filter design with windowing method |
|