1. | Introduction to the Machine Learning | 11. 9. 6 | ||
2. | Bayesian Decision Theory | 11. 9. 8 | ||
3. | Decision theory and Parametric probability models | 11. 9. 15 | ||
4. | Parametric probability models | 11. 9. 19 | ||
5. | Maximum Entropy + Model Selection and hidden variables | 11. 9. 27 | ||
6. | Maximum Entropy + Model Selection and hidden variables cont | 11. 9. 29 | ||
7. | Dimension reduction | 11. 10. 4 | ||
8. | Singular Value Decomposition | 11. 10. 6 | ||
9. | Fishers LDA | 11. 10. 11 | ||
10. | K Means and EM | 11. 10. 12 | ||
11. | More EM | 11. 10. 13 | ||
12. | Decision Trees | 11. 10. 18 | ||
13. | Linear Discrimination | 11. 10. 20 | ||
14. | multilayer perception | 11. 10. 25 | ||
15. | Support Vector machines | 11. 10. 27 | ||
16. | AdaBoost | 11. 11. 1 | ||
17. | AdaBoost (cont) | 11. 11. 3 | ||
18. | MultiClass SVM | 11. 11. 8 | ||
19. | MultiClass SVM cont | 11. 11. 9 | ||
20. | Non linear Dimension Reduction | 11. 11. 23 | ||
21. | Non linear Dimension Reduction cont | 11. 11. 24 | ||
22. | Non linear Dimension Reduction cont | 11. 11. 29 | ||
23. | Graphical Models | 11. 12. 6 | ||
24. | summary of course | 11. 12. 8 |