'파이썬 고급 프로그래밍' 강의계획서

· 기본정보

과목명	파이썬 고급 프로그래밍				
학점(시간)	-				
이수구분	비교과	과목유형	비교과	수업형태	온라인

·세부내용

※선행과제 : 컴퓨팅 사고에 관련된 기본 지식 습득, 파이썬 기초 프로그래밍 능력 습득

강의 소개:

본 과목은 파이썬 고급 프로그래밍의 중요한 주제들을 설명하며, 관련 예제 프로그램을 통하여 실무 지식을 습득할 수 있게 한다. 본 과목의 세부 강의 내용은 다음과 같다:

- 객체 지향형 프로그래밍 (Object-oriented Programming), 클래스 (Class)와 객체 (Object)
- 파이썬 파일 입출력, 데이터 분석
- 파이썬 터틀 (turtle)그래픽, tkinter GUI
- 파이썬 확장 패키지 NumPy, 유니버설 함수, Matplotlib, Pandas, OpenCV
- 사용자 정의 파이썬 모듈/패키지의 설계 및 구현
- 파이썬 기반 자료구조와 알고리즘
- 파이썬 응용 프로그래밍 다중 스레드 (multi-thread), 인터넷 소켓 (socket)통신
- 파이썬 기반 인공지능(AI), 기계학습(Machine Learning), 심층학습 (Deep Learning)
- 파이썬 프로그램의 성능 향상 방법 C++ 확장 모듈, Numba, CUDA, PyTorch 기반 파이썬 실행 성능 개선

수업목표 :

본 과목에서는 파이썬 프로그래밍 언어를 기반으로 한 고급 문제 해결 프로그래밍 기법에 대하여 설명하며, 체계적인 소프트웨어 개발, 성능 분석 및 향상 기법 습득하고, 핵심 자료구조와 알고리즘에 대한 이해, 세부 사항 구현 및 활용 방법 습득하는 것에 목표를 둔다:

- 1. 객체 지향형 프로그래밍, 클래스와 객체
- 2. 파이썬 파일 입출력, 데이터 분석
- 3. 파이썬 터틀 (turtle)그래픽, tkinter GUI
- 4. 파이썬 확장 패키지 NumPy, 유니버설 함수, Matplotlib, Pandas, OpenCV
- 5. 사용자 정의 파이썬 모듈/패키지의 설계 및 구현
- 6. 파이썬 기반 자료구조와 알고리즘
- 7. 파이썬 응용 프로그래밍 다중 스레드, 인터넷 소켓통신
- 8. 파이썬 기반 인공지능(AI), 기계학습(Machine Learning), 심층학습 (Deep Learning)
- 9. 파이썬 성능 향상 C++ 확장 모듈, Numba, CUDA, PyTorch 기반 파이썬 실행 성능 개선

· 주별 계획

주차	수업내용	수업방법
1주차	■ 객체지향형 프로그래밍, 파이썬 클래스, 인스탄스	
	■ 파이썬 클래스 속성, 연산자	온라인 강의
	■ 파이썬 클래스 상속	
	■ 사용자 정의 파이썬 클래스	
2주차	■ NumPy	온라인 강의
3주차	Pandas	온라인 강의
	■ Matplotlib	
	■ Seaborn	
	■ OpenCV	
	■ 대표적인 알고리즘, 성능 개선, 분할 및 정복	온라인 강의
	■ 동적 프로그래밍, 배낭 문제	
	■ 대표적인 자료구조, 힙 우선순위 큐, 해시 맵	
	■ 그래프, 깊이우선탐색, 넓이우선탐색, Dijkstra 최단거리경로탐색	
	■ 파이썬 병렬, 동시처리, 스레드, 제네레이터	온라인 강의
	■ 파이썬 스레드, 멀티프로세스	
	파이썬 소켓통신, 텍스트 영상 채팅	
	■ 파이썬 기반 AI, ML	0.310
	■ 파이썬 기반 심층학습 (Deep Learning)	온라인 강의
	■ 파이썬 기반 강화학습 (Reinforced Learning) ■ 파이썬 프로그램 성능 향상, Numba Jit	
7주차		
	■ C++ 기반 파이썬 모듈 구현 - PyCppExt	온라인 강의
	■ CUDA, GPU, PyTorch 기반 파이썬 프로그램 성능 향상	
	■ 과목 종합 정리	