2019년도 2학기 동역학 수업계획서

교과목명	(20)	도여하	(여무)	Dynamica
Course Title	(숙단)	879	(8년)	Dynamics

담당교수(소속) Lecturer	곽관웅 (기계공학전공)	학수번호/구분/학점 (Course No. /)	004642/전공필수/3학점
전화(연구실/HP) Contact No.		강의시간/강의실 (Class Hour/Venue)	화/목 09:00~10:30
선수과목 (Course Prerequisite)	일반물리학	수강대상 (Target Student)	기계공학과 2학년
E-mail (E-mail Address)		연구실/Office Hour (Office/Office Hour)	월/수 16:30-18:00, 충1114

교과목표 (Objectives)	본 과목은 Newton역학에 기초하여 질점이나 강체로 단순화된 물체들로 이루어진 시스템의 운동자체를 다루는 운동학 (Kinematics)과, 물체에 작용하는 힘과 운동의 상관관계를 다루는 운동역학 (kinetics)을 이해할 수 있는 능력을 배양시키는데 목표가 있다. 이를 위해 위치, 속도, 가속도, 각속도, 각가속도 등과 같은 운동의 기본개념들과 질량 및 관성 모멘트의 개념들을 습득하고 이들을 수학적으로 나타내는 방법과 이들 상호간의 관계를 유도하는 방법을 배운다. 또한 자유물체도 작성에 의한 운동방정식 유도방법과 일, 에너지, 운동량, 충격량 등의 개념 및 사용방법을 습득한다.
핵심역량 (Competencies related to this course)	 ▼ 논리비판적사고 (Logical and Critical Thinking) □ 창의융합적사고 (Creative and Convergent Thinking) □ 자기관리 (Self-management Competency) □ 문제해결 (Problem Solving Competency) □ 소통 (Communication Competency) □ 글로벌 (Global Competency) □ 공동체의식 (Community Competency)
이번 강의의 개선을 위한 개선계획 CQI (Continuous Quality Improvement Plan)	- homework에 대한 문제풀이로 개별 feedback 대체
교 재 (Text book)	주교재: R.C. Hibbeler, "Engineering Mechanics: Dynamics", 13th edition in SI Units, Pearson and Prentice Hall 참고도서: Ferdinand P. Beer, Russell Johnston Jr., William E. Clausen, "Vector Mechanics for Engineers: Dynamics", Seventh Ed. in SI Units, McGraw Hill
과제도서 (Assignment book)	R.C. Hibbeler, "Engineering Mechanics: Dynamics", 11th edition in SI Units, Pearson and Prentice Hall
과제물 (Assignment)	주요 내용을 확인하고 심화할 수 있는 연습 문제가 과제로 출제되며, 과제 발표 1주일 후까지 결과를 제출토록 한다
학업성취 평가방법 (Course Grading)	[상대평가] 중간고사(%): 40, 기말고사(%): 40, 수시평가및과제(%): 10, 출석(%): 10, 중간고사(40 %), 기말고사(40 %), 수시고사 및 과제(10 %), 출석(10 %) 걸석 10회 → FA, 지각 2회 = 걸석 1회

주별 교과내용 (교과목명 : 동역학)

주 (Week)	교 수 내 용 (Course Contents)	수업형태 및 활용기자재 (Etc.)	비고
1	Introduction to Dynamics Kinematics of a Particles (position, velocity, acceleration) Introduction to Dynamics Kinematics of a Particles (position, velocity, acceleration)	ppt	
2	Kinematics of a Particles (curvilinear motion) Kinematics of a Particles (curvilinear motion: normal & tangent components)	ppt	HW#1
3	Kinematics of a Particles (dependent motion, relative motion analysis) Kinetics of a Particles: Force and Acceleration (Newton's Law, E.O.M.) Kinetics of a Particles: Force and Acceleration (EOM in rectangular, normal-tangent, cylindrical coordinates)—(1)	ppt	
4	Kinetics of a Particles: Force and Acceleration (EOM in rectangular, normal-tangent, cylindrical coordinates)-(2) Kinetics of a Particles: Work and Energy (work of a force, spring, weight)	ppt	HW#2
5	Kinetics of a Particles: Work and Energy (principle of work and energy) Kinetics of a Particles: Work and Energy (principle of work and energy for a system of particles)	ppt	
6	Kinetics of a Particles: Work and Energy (Power & efficiency) Kinetics of a Particles: Work and Energy (conservative force & potential energy, conservation of energy)	ppt	HW#3
7	Kinetics of a Particles :Impulse and Momentum (principle of linear impulse and momentum for a particle and a system of particles) Kinetics of a Particles :Impulse and Momentum (conservation of linear momentum) Kinetics of a Particles :Impulse and Momentum (Impact) angular momentum	ppt	HW#4
8	Review 중간고사	ppt	

주별 교과내용 (교과목명 : 동역학)

주 (Week)	교 수 내 용 (Course Contents)	수업형태 및 활용기자재 (Etc.)	비고
9		ppt	
10	Planar Kinematics of a Rigid Body (rigid body motion: translation, rotation about a fixed axis) Planar Kinematics of a Rigid Body (relative motion analysis: velocity)	ppt	HW#5
11	Planar Kinematics of a Rigid Body (Instantaneous center of zero velocity) Planar Kinematics of a Rigid Body (relative motion analysis: acceleration)	ppt	
12	Planar Kinematics of a Rigid Body (relative motion analysis using roatating axis) Planar Kinetics of a Rigid Body :Force and Acceleration (moment of inertia)	ppt	HW#6
13	Planar Kinetics of a Rigid Body :Force and Acceleration (planar kinetic equations of motion,EOM: general plane motion) Planar Kinetics of a Rigid Body :Work and Energy (Kinetic energy, work of a force)	ppt	
14	Planar Kinetics of a Rigid Body: Work and Energy (principle of work and energy, conservaation of energy) Planar Kinetics of a Rigid Body: Impulse and Momentum (linear and angular momentum, principle of impuluse and momentum) Planar Kinetics of a Rigid Body: Impulse and Momentum (conservation of momentum)	ppt	HW#7
15	Planar Kinetics of a Rigid Body :Impulse and Momentum (eccentric impact)	ppt	HW#8
16	Review 기말고사		

추 가 안내사항1 (Additional Guide1)	특별한 지원이 필요한 경우(장애학생 등) 학기 첫 주에 담당교수와의 면담을 통해 출석, 강의, 과제 및 시험 등에 관한 교수학습지원 사항을 요청할 수 있음. Students who require special assistance (including special needs students) may contact their professors during the first week of the semester to discuss issues related to attendance, lectures, assignments and exams and request learning assistance. 세종대학교 Blackboard 시스템을 통하여 강의 관련 정보를 공유함
추 가 안내사항2 (Additional Guide2)	