Extended Syllabus

Course Title	Fitle Biochemsitry I		CHM2601	
Credit	3	Enrollment Eligibility	3 rd or 4 th year students	
Class Time	Mon 12:00~13:15, Fri 10:30~11:45	Classroom		

	Name: Lee, Hyun Soo	Homepage:
Instructor's Photo	E-mail:	Telephone:
	Office: R307 Office Hours: Tue, Wed, Thur 8:00-11:30AM	

I. Course Overview

1. Description
This course explores the roles of essential biological molecules focusing on protein and nucleic acid chemistry.
It provides a systematic and methodical application of general and organic chemistry principles. Students
examine the structure of proteins, their function, their binding to other molecules and the methodologies for
the purification and characterization of proteins. Enzymes and their kinetics and mechanisms are covered in
detail. Metabolic pathways are examined from thermodynamic and regulatory perspectives. This course
provides the linkage between the inanimate world of chemistry and the living world of biology.

2. Prerequisites

General chemistry I, II and organic chemistry I, II

3. Course Format (%)												
Lecture	Discuss	ion	Exper	iment/Practicum	۱	Field stud	dy	Presen	tations		Other	
95%		5%		%	, 0		%		%			%
4. Evaluation (%)												
mid-term Exam	final exam	Qui	zzes	Presentations	F	Projects	Ass	ignments	Participat	ion	Other	r
50%	25%		%	%		%		15%	1	.0%		%

II. Course Objectives

- 1. To explain the basics of nucleic acids, DNA and RNA.
- 2. To describe the flow of genetic information from DNA to proteins.
- 3. To understand the specificity of enzymes and describe catalytic mechanisms of selected enzymes.

III. Course Format

(* In detail)

This course is designed to let the students learn the basics of biochemistry. Most of the class time will be spent for lecture presented by the professor. For some chapters, videos will be played to help the student understand the textbook.

IV. Course Requirements and Grading Criteria

Evaluation will be performed by

- two midterms (100 pts each)
- one final exam (100 pts)
- assignments (60 pts)
- participation (40 pts)

V. Course Policies

General things for this course will be managed by school policies. Special things will be announced by the professor.

VI. Materials and References

Textbook: Biochemistry 7th ed. by Berg, Tymoczko, Stryer Lecture materials will be uploaded in the Cyber Campus by 9pm on Sun and Thur.

VII. Course Schedule

(* Subject to change)

		(* Subject to change)					
	Learning Objectives	Chapter 1. To understand the biochemical unity and diversity in biological systems and to learn basic chemical principles to explain the properties of biological molecules					
	Topics	Biochemical unity, structure and function of DNA, and chemical concepts used to explain the properties of biological molecules.					
Week 1	Class Work (Methods)	Lecture and discussions					
	Materials (Required Readings)	PPT files uploaded in the Cyber Campus, textbook chapter 1.					
	Assignments						
	Learning Objectives	Chapter 2. To explain key properties of proteins					
	Topics	Protein composition, and primary and secondary structure of proteins					
Week 2	Class Work (Methods)	Lecture and discussions					
	Materials (Required Readings)	PPT files uploaded in the Cyber Campus, textbook chapter 2.					
	Assignments						
	Learning Objectives	Chapter 2. To explain key properties of proteins					
	Topics	Tertiary and quaternary structure of proteins, and amino acid sequence and three-dimensional structure of proteins					
Week 3	Materials (Required Readings)	Lecture and discussions					
	Class Work (Methods)	PPT files uploaded in the Cyber Campus, textbook chapter 2.					
	Assignments						
	Learning Objectives	Chapter 3. To learn various experimental techniques for protein studies					
Week 4	Materials (Required Readings)	Protein purification, protein sequence determination, and immunology-related protein analysis.					
	Topics	Lecture and discussions					
	Class Work (Methods)	PPT files uploaded in the Cyber Campus, textbook chapter 3.					

	Assignments						
Week 5	Learning Objectives	Chapter 3. To learn various experimental techniques for protein studies					
	Topics	Protein mass spectrometry, solid-phase peptide synthesis, and X-ray crystallography and NMR spectroscopy for protein structure determination					
	Class Work (Methods)	Lecture and discussions					
	Materials (Required Readings)	PPT files uploaded in the Cyber Campus, textbook chapter 3.					
	Assignments						
	Learning Objectives	Chapter 4. To describe the flow of genetic information from DNA to proteins					
Week	Topics	Properties of DNA, DNA replication, gene expression, genetic code, and exon and intron.					
6	Class Work (Methods)	Lecture and discussions					
	Materials (Required Readings)	PPT files uploaded in the Cyber Campus, textbook chapter 4.					
	Assignments						
	Learning Objectives	Chapter 5. To learn tools for genome studies					
Week	Topics	Tools of gene exploration, recombinant DNA technology, and genome sequencing and analysis.					
7	Class Work (Methods)	Lecture and discussions					
	Materials (Required Readings)	PPT files uploaded in the Cyber Campus, textbook chapter 5.					
	Assignments						
Week	Learning Objectives	중간고사					
8	Topics						
	Class Work (Methods)						

	Materials (Required Readings)					
	Assignments					
	Learning Objectives	Chapter 6. To learn evolution and bioinformatics of proteins				
Week	Topics	Homologs, analysis of sequence fragments, examination of three- dimensional structure, evolutionary trees, and molecular exploration of evolution				
9	Class Work (Methods)	Lecture and discussions				
	Materials (Required Readings)	PPT files uploaded in the Cyber Campus, textbook chapter 6.				
	Assignments					
	Learning Objectives	Chapter 7. To describe biochemical characteristics of hemoglobin				
) M/ I-	Topics	Myoglobin and hemoglobin as an oxygen binder				
Week 10	Class Work (Methods)	Lecture and discussions				
	Materials (Required Readings)	PPT files uploaded in the Cyber Campus, textbook chapter 7.				
	Assignments					
	Learning Objectives	Chapter 7. To describe biochemical characteristics of hemoglobin				
Week	Topics	Cooperative binding of oxygen, the Bohr effect, and mutations genes encoding hemoglobin				
11	Class Work (Methods)	Lecture and discussions				
	Materials (Required Readings)	PPT files uploaded in the Cyber Campus, textbook chapter 7.				
	Assignments					
Week	Learning Objectives	Chapter 8. To describe basic concepts and kinetics of enzymes				
12	Topics	Basics of enzymes, understanding of enzymes by free energy, and the transition state				

	Class Work (Methods)	Lecture and discussions			
	Materials (Required Readings)	PPT files uploaded in the Cyber Campus, textbook chapter 8.			
	Assignments				
	Learning Objectives	Chapter 8. To describe basic concepts and kinetics of enzymes			
Week	Topics	The Michaelis-Menten Model and enzyme inhibition,			
13	Class Work (Methods)	Lecture and discussions			
	Materials (Required Readings)	PPT files uploaded in the Cyber Campus, textbook chapter 8.			
	Assignments				
	Learning Objectives	Chapter 9. To describe catalytic strategies of enzymes			
	Topics	Proteases, carbonic anhydrases, restriction enzymes, and myosins			
Week 14	Class Work (Methods)	Lecture and discussions			
	Materials (Required Readings)	PPT files uploaded in the Cyber Campus, textbook chapter 9.			
	Assignments				
	Learning Objectives	Chapter 10. To describe ragulatory strategies of enzymes			
	Topics	Allosteric regulation, isozymes, covalent modification, and proteolytic cleavage			
Week 15	Class Work (Methods)	Lecture and discussions			
	Materials (Required Readings)	PPT files uploaded in the Cyber Campus, textbook chapter 10.			
	Assignments				
Week	Learning Objectives	Final exam			
16	Topics				

Class Wo (Method		
Materia (Required Re		
Assignme	nts	

M. Special Accommodations

In cases you want to request special accommodations to take courses and exams due to a temporary or permanent physical, sensory, psychological/emotional or learning disability, contact the school office at 02-705-7833. The Instructor will take necessary measure to accommodate any needs that can be acknowledged by the school policy.

* Please write support plans or notices for special students such as the challenged, foreigners and North Korean defectors.

